Referenties

  1. Adams, Rod, Thorcon – Demonstrated Molten Salt Tech Packaged with Modern Construction Techniques, Jan .6 2015 Atomic Insights.
  2. Ashley, S. F., 2012. Thorium fuel has risks. Nature, 6 12, pp. 31-33.
  3. Carpenter, J., 2003. Neutron Production, Moderation, and Characterization of Sources, Lemont: Argonne National Laboratory.
  4. Delpech, S. et al., 2009. Reactor physic and reprocessing scheme for innovative molten salt reactor system. Journal of fluoride chemistry, Volume 130, pp. 11-19.
  5. Deutch, J. M. et al., 2009. The future of nuclear power, Cambridge: Massachusetts Institute of Technology.
  6. Fetter, S., 2009. www.scientificamerican.com.
  7. Foro Nuclear, 2011. www.foronuclear.org
  8. Gamble, J., 2011. www.nuclearfissionary.com.
  9. Gen IV International Forum, 2014. Technology Roadmap Update for Generation IV Nuclear Energy Systems, s.l.: OECD Nuclear Energy Agency for the Generation IV International Forum.
  10. Hargraves, R. & Moir, R., 2010. Liquid Fluoride Thorium Reactors. American Scientist, 98(July/August), pp. 304-313.
  11. Hart, J., 2011. Toepassing van Thorium in de Nucleaire Splijtstofcyclus, Petten: Ministerie van Economische Zaken.
  12. Haubenreich, P. & Engel, J., 1969. Experience with the molten salt reactor experiment. Nuclear applications and technology, Volume 8, pp. 118-136.
  13. Ingersoll, D. T., Parma, E. J., Forsberg, C. W. & Renier, J. P., n.d. Core physics characteristics and issues for the advanced hightemperature reactor (AHTR), s.l.: Oak Ridge National Laboratory.
  14. IThEO, 2015. Thorium Energy Report, Malmo: IThEO.
  15. Journée, D. J., 2014. Helium bubbling in a molten salt fast reactor , Delft: TU Delft.
  16. Juhasz, A. J., Rarick, R. A. & Rangarajan, R., 2009. High Efficiency Nuclear Power Plants Using Liquid Fluoride Reactor Technology, Cleveland: NASA.
  17. Kasten, P., 1969. Graphite behaviour and its effect on MSBR performance, Oak Ridge: Oak Ridge National Laboratory.
  18. Kloosterman, J. L., 2012. www.janleenkloosterman.nl.
  19. Kloosterman, J. L., 2016. www.janleenkloosterman.nl.
  20. Kloosterman, J. L., 2016. MSR properties 2016, Delft: s.n.
  21. Leblanc, D., 2009. Molten salt reactors: A new beginning for an old idea. Nuclear engineering and design, 240(6), pp. 1644-1656.
  22. LeBlanc, D.,  Kloosterman, J.L. 2015. www.janleenkloosterman.nl 
  23. MacPherson, H., 1985. The Molten Salt Reactor Adventure. Nuclear science and engineering.
  24. Mahaffey, J., 2014. Atomic Accidents. 1st ed. New York: Pegasus Books.
  25. Matson, J., 2011. www.scientificamerican.com 
  26. Merle-Lucotte, E. et al., 2012. The thorium molten salt reactor: launching the thorium cycle while closing the current fuel cycle, Grenoble-Cedex: LPSC, Université Joseph Fourier.
  27. Moir, R., 2001. Cost of electricity from molten salt reactors, Livermore: Lawrence Livermore national laboratory.
  28. National Nuclear Laboratory, 2012. Comparison of thorium and uranium fuel cycles, s.l.: Department of energy and climate change.
  29. Rosenthal, M., Kasten, P. & Briggs, R., 1969. Molten Salt Reactor – History, status, and potential. Nuclear technology, 8(2), pp. 107-117.
  30. Serp, J. et al., 2014. The Molten Salt Reactor (MSR) in generation IV: overview and perspectives. Progress in nuclear energy, 10 2, pp. 1-12.
  31. Sietsma, J., 2015. Materials challenges for MSR. Delft, TU Delft.
  32. Sohal, M., Ebner, M., Sabarwall, P. & Sharpe, P., 2010. Engineering database of liquid salt thermophysical and thermochemical properties, Idaho Falls: Idaho National Laboratory.
  33. Sorensen, K., 2012. energyfromthorium.com 
  34. Transatomic Power, 2016. www.transatomicpower.com 
  35. Uhlir, J., 2007. Chemistry and technology of Molten Salt Reactors. Journal of nuclear materials, 360(6).
  36. Weinberg, A., 1994. The first nuclear era. 1st ed. Woodbury : AIP Press.
  37. Wilkins, A., 2011. www.gizmodo.com. 
  38. World Nuclear Association, 2016. www.world-nuclear.org 

Andere websites over thorium en gesmoltenzoutreactoren